Cephalic axial skeletal-neural dysraphic disorders: embryology and pathology.
نویسنده
چکیده
Three fundamental types of cephalic axial skeletal-neural dysrapic disorders are analyzed, including: cranioschisis aperta with encephaloschisis (anencephaly and/or exencephaly), cranioschisis occulta with occipital encephalocele, and the Chiari malformation (occipital bone hypoplasia) with compression, deformation and displacement of hindbrain, cerebellum, and medulla. Both clinical and experimental (vitamin A induced) examples of these malformations are used. The study establishes that these are not simple neurological (neural tube defects) disorders as it has been generally assumed, but complex developmental malformations affecting primarily the formation of the axial basicranium (causing skeletal defects) and the elevation of the neural folds and neurocranium (causing neural defects), and, secondarily, the topography of the facial skeleton or viscerocranium (causing oropharyngeal defects). The pathology of these skeletal, neural, and oropharyngeal defects is analyzed, their embryonic origin explored, and their developmental interrelationships discussed. The study proposes that an early paraxial mesodermal insufficiency may be the original anomaly common to all the different malformations that constitutes this heterogeneous group of dysraphic disorders. At any time during the segmental formation of the embryonic skeletal-neural axis a simple reduction in the number of paraxial mesodermal cells produced by the Hensen node/primitive streak complex, could impair the formation of the axial skeleton as well as the elevation of the neural folds thus interfering with their closure. The final type of malformation is determined by variations of the degree, time of occurrence, and duration of the paraxial mesodermal insufficiency.
منابع مشابه
Notochordal-basichondrocranium relationships: abnormalities in experimental axial skeletal (dysraphic) disorders.
The notochordal-basichondrocranium relationships have been investigated in cranioschisis occulta with encephalocoele (CSO-EN) and in cranioschisis aperta with exencephaly (CSA-EX) which represent, respectively, a minimal and a severe form of experimentally induced axial skeletal (dysraphic) disorders. Although apparently different, these two malformations are considered to represent different d...
متن کاملParticipation of neural crest-derived cells in the genesis of the skull in birds.
The differentiation of cephalic neural crest cells into skeletal tissue in birds has been observed using the quail-chick nuclear marking system, which is based on specific differences in the distribution of the nuclear DNA. Chimaeras were formed by replacing a fragment of cephalic neural primordium of a 2- to 12-somite chicken embryo by the corresponding fragment isolated from an equivalent qua...
متن کاملCalcium and neurulation in mammalian embryos.
The role of calcium in neurulation in rat embryos has been studied. Rat embryos at 10 X 4 days of gestation, when the cephalic neural folds have elevated but not fused, have been cultured in various media, and the effects of these media on the morphology of the cephalic neural folds have been observed by scanning and transmission electron microscopy. Embryos cultured in serum containing EDTA or...
متن کاملMesectodermal capabilities of the trunk neural crest of birds.
Orthotopic transplantation experiments have shown that in birds, under normal conditions, mesectodermal capabilities seem restricted to the cephalic neural crest down to the level of the 5th somite. In the present study the mesectodermal capabilities of trunk and lumbar neural crest were investigated at early stages of development by heterotopic, heterospecific transplantation of the neural pri...
متن کاملThe histogenetic potential of neural plate cells of early-somite-stage mouse embryos.
The mesencephalic neural plate of early-somite-stage mouse embryos differentiated underneath the renal capsule to form mostly neural tissues together with other tissues some of which were probably of neural crest cell origin. The capacity to form non-neural tissues such as skeletal tissues and melanocytes was lost at about the 5-somite stage. The lateral areas of the plate tended to form non-ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques
دوره 18 2 شماره
صفحات -
تاریخ انتشار 1991